
Escuela Superior de Cómputo
Evaluación a Título de Suficiencia Especial

Sistemas Distribuidos

Prototipo de sistema de comercio electrónico utilizando
microservicios sobre Kubernetes en la nube

Resumen

Se desarrollará un prototipo de sistema de comercio electrónico desplegado en la nube,
consistente en un front-end HTML-Javascript y un back-end implementado como
microservicios Java, accediendo a una instancia de MySQL administrada (PaaS). Cada
microservicio ejecutará en un pod de Kubernetes.

El servidor web será Nginx y ejecutará en un pod. Los archivos del front-end estarán en un
almacenamiento compartido. El servidor web accederá a los archivos del front-end utilizando
Persistent Volume (PV) y Persistent Volume Claim (PVC).

El API Gateway será Nginx, el cual recibirá peticiones HTTP y ejecutará en un pod. El API
Gateway se expondrá al cliente (navegador) mediante un servicio de Kubernetes de tipo
LoadBalancer.

El API Gateway enrutará las peticiones HTTP a los pods que ejecutarán los microservicios
(incluyendo el servidor web), por tanto, los pods se expondrán al API Gateway utilizando un
servicio de Kubernetes de tipo ClusterIP.

No se requiere escalado automático de pods, por tanto, las replicas de los pods se definirán
directamente en los manifest files de tipo Deployment.

Requerimientos no funcionales

1. El back-end consistirá de cuatro microservicios Java ejecutando en Kubernetes
administrado (PaaS):

1. Gestión de usuarios. Microservicio para gestionar los datos de los usuarios.
2. Gestión de artículos. Microservicio para gestionar los datos de los artículos.
3. Gestión de compras. Microservicio para gestionar la compra de artículos.
4. Servidor web. Microservicio que ejecutará Nginx en un pod.

2. Se deberá utilizar MySQL administrado en la nube (PaaS).

3. Se deberá utilizar Kubernetes administrado en la nube (PaaS).

4. Los archivos del front-end (.html, .js, .jpeg, .css, etc.) se deberán colocar en un
almacenamiento compartido (Azure Files, Amazon EFS o Google Filestore). Los archivos del

front-end no deberán colocarse en el file system del contenedor que ejecuta el servidor web
(Nginx).

5. El front-end se desarrollará en HTML-Javascript. Se podrá utilizar cualquier framework
(p.e. React, Angular, Bootstrap, etc.).

6. El back-end consistirá en servicios web Java ejecutando en pods de Kubernetes. Se podrá
utilizar cualquier framework para desarrollar los microservicios (p.e. Spring Boot, Azure
Functions, JDK, etc.).

6.1 Las funciones del back-end invocadas con POST y PUT recibirán JSON en el “body”.

6.2 Todas las funciones del back-end (GET, POST, PUT y DELETE) regresarán JSON.

7. Cada microservicio tendrá su propia base de datos y no deberá acceder a la base de datos
de otro microservicio; suponiendo que “12345678” es el número de boleta del alumno o
alumna:

7.1 La base de datos para la Gestión de usuarios se llamará “bdgu_12345678” e incluirá la
siguiente tabla:

Tabla: usuarios
Columna Tipo Nulo
id_usuario int no
email varchar(100) no
password varchar(64) no
token varchar(40) si
nombre varchar(100) no
apellidos varchar(100) no

El id_usuario será llave primaria auto-incrementada.

La columna “password” almacena el hash (sha-256) de la contraseña en formato
hexadecimal. Debido a que sha-256 produce un número de 32 bytes, el password se
almacena como 64 caracteres hexadecimales.

Se deberá crear un índice único para el campo “email”.

7.2 La base de datos para la Gestión de artículos se llamará “bdga_12345678” e incluirá las
siguientes tablas:

Tabla: stock
Columna Tipo Nulo
id_articulo int no
nombre varchar(256) no
descripcion varchar(256) no
precio decimal(10,2) no

El id_articulo será llave primaria auto-incrementada.

Tabla: fotos_articulos
Columna Tipo Nulo
id_foto int no
foto longblob no
id_articulo int no

7.3 La base de datos para la Gestión de compras se llamará “bdgc_12345678” e incluirá las
siguientes tablas:

Tabla: carrito_compra
Columna Tipo Nulo
id_usuario int no
id_articulo int no
cantidad int no

Se deberá crear un índice único para los campos (id_usuario,id_articulo).

Tabla: stock
Columna Tipo Nulo
id_articulo int no
cantidad int no

8. Para cada microservicio se deberá escribir: 1) un Dockerfile para crear la imagen, 2) un
manifest file de tipo Deployment para el despliegue de los pods y 2) un manifest file de tipo
ClusterIP para el despliegue del servicio que expone el microservicio al API Gateway.

9. Para que el servidor web (Nginx) tenga acceso a los archivos correspondientes a la
aplicación web, es necesario crear un servicio Persistent Volume (PV) y un servicio
Persistent Volumen Claim (PVC). El PVC deberá definir storageClassName: "" (lo cual indica
que el almacenamiento compartido no lo creará automáticamente Kubernetes), por tanto, el
almacenamiento compartido deberá ser creado por el alumno o la alumna y deberán cargar
los archivos del front-end (html, js, css, jpeg, png, etc.) en el almacenamiento compartido.

10. El API Gateway será Nginx, el cual deberá ejecutar en un pod en Kubernetes y deberá
exponer un servicio de Kubernetes de tipo Loadbalancer.

11. El sistema mostrará las siguientes pantallas:

11.1 Login. Pantalla que permite ingresar el email del usuario y la contraseña. Así mismo, en
esta pantalla se incluirá una opción para registrar un nuevo usuario.

11.2 Alta de usuario. Pantalla para registrar un nuevo usuario.

11.3 Menú principal. Pantalla que muestra un menú con las siguientes opciones: “Captura
de artículo” y “Compra de artículos”.

11.4 Captura de artículo. Pantalla para dar de alta los datos de un artículo.

11.5 Compra de artículos. Pantalla para buscar artículos y para comprar artículos.

11.6 Carrito de compra. Pantalla que muestra los artículos en el carrito de compra.

12. Solo se podrá utilizar Microsoft Azure, AWS o Google Cloud. La siguiente tabla muestra
cómo se llaman las diferentes tecnologías a implementar, de acuerdo a la plataforma a
utilizar:

Azure AWS Google Cloud

Kubernetes administrado
AKS (Azure Kubernetes
Service)

EKS (Elastic Kubernetes
Service)

GKE (Google Kubernetes
Engine)

Servicio interno entre pods Serrvicio ClusterIP Serrvicio ClusterIP Serrvicio ClusterIP
Exposición externa del API
Gateway Servicio LoadBalancer Servicio LoadBalancer Servicio LoadBalancer
Balanceador creado
automáticamente Azure Load Balancer AWS ELB / NLB Google Cloud Load Balancer

Almacenamiento compartido de
archivos Azure Files Amazon EFS Filestore

Persistent Volume PV (Azure Files CSI) PV (EFS CSI) PV (Filestore CSI)

Persistent Volume Claim PVC PVC PVC

MySQL administrado Azure Database for MySQL Amazon RDS for MySQL Cloud SQL for MySQL
Registro de imágenes de
contenedor

Azure Container Registry
(ACR) Amazon ECR Artifact Registry

Escalado de los microservicios Replicas en manifest file Replicas en manifest file Replicas en manifest file

Arquitectura del sistema

La arquitectura del sistema es la siguiente (notar que podrán existir varias réplicas de los
pods que ejecutan el Api Gateway y los microservicios):

Requerimientos funcionales del back-end

1. El microservicio "Gestión de usuarios" deberá incluir las siguientes funciones:

• usuarios/alta_usuario. Da de alta un usuario. Recibe como parámetros los datos del
usuario: email, hash del password (sha-256), nombre y apellidos. Si no hay error
regresa el código HTTP 200 y {“mensaje”:”OK”} de otra manera regresa el código
HTTP 400 y {“mensaje”:”<mensaje de error>”}. La petición HTTP deberá ser POST.

• usuarios/login. Autentica un usuario. Recibe como parámetros el email y el hash de
la contraseña; si el email y el hash de la contraseña se encuentran en la tabla de
"usuarios", genera un token aleatorio de 40 caracteres, actualiza el token en la tabla
"usuarios" y regresa el código HTTP 200 y {“id_usuario”: <id_usuario>, ”token”:
”<token>”}. Si el email y el hash de la contraseña no se encuentran en la tabla
"usuarios" regresa el código HTTP 400 y {“mensaje”: "Acceso denegado"}. La petición
HTTP deberá ser POST.

• usuarios/verifica_acceso. Verifica que el usuario se haya autenticado (logueado). La
función recibirá como parámetros el id_usuario y el token; regresará el código HTTP
200 y {“acceso”:<true o false>}, indicando si el id_usuario y el token se encontraron en
la tabla de "usuarios". Si hay error regresa el código HTTP 400 y {“mensaje”:
"<mensaje de error"}. La petición HTTP deberá ser GET.

2. El microservicio "Gestión de artículos" deberá incluir las siguientes funciones:

• articulos/alta_articulo. Da de alta artículos en la tabla "stock". La función recibirá
como parámetros el nombre del artículo, la descripción del artículo, el precio, la
cantidad de artículos en existencia, la fotografía del artículo, el id_usuario y el token
del usuario. Para ejecutar la función, se deberá verificar el acceso utilizando la función
"verifica_acceso" del microservicio "Gestión de usuarios". Debido a que la cantidad del
artículo no existe en la base de datos del microservicio "Gestión de artículos", la
función "alta_articulo" deberá invocar la función "alta_articulo" del microservicio
"Gestión de compras". Si no hay error regresa el código HTTP 200 y {“mensaje”:“OK”}
de otra manera regresa el código HTTP 400 y {“mensaje”:”<mensaje de error>”}. El
INSERT a la tabla “stock” y el INSERT a la tabla “fotos_artículos” deberá hacerse
dentro de una transacción. La petición HTTP deberá ser POST.

• articulos/consulta_articulos. Busca una palabra (p.e. mayonesa) en los campos
“nombre” y “descripcion” en la tabla “stock”. Si no hay error, regresa el código HTTP
200 y un arreglo JSON con los datos de los artículos (id_articulo, fotografía, nombre,
descripción y precio). Si hay error regresa el código HTTP 400 y {“mensaje”:”<mensaje
de error>”}. La búsqueda se deberá realizar utilizando una instrucción SELECT con
LIKE. La función recibirá como parámetros la palabra clave, el id_usuario y el token
del usuario. Para ejecutar la función, se deberá verificar el acceso utilizando la función
"verifica_acceso" del microservicio "Gestión de usuarios". La petición HTTP deberá ser
GET.

3. El microservicio "Gestión de compras" deberá incluir las siguientes funciones:

• compras/alta_articulo. Da de alta el artículo en la tabla "stock". La función recibirá
como parámetros el id_artículo, la cantidad en existencia, el id_usuario y el token del
usuario. Si no hay error regresa {“mensaje”:”OK”} de otra manera regresa
{“mensaje”:”<mensaje de error>”}. Para ejecutar la función, se deberá verificar el
acceso utilizando la función "verifica_acceso" del microservicio "Gestión de usuarios".
La petición HTTP deberá ser POST.

• compras/compra_articulo. Realiza la compra de un artículo. La función recibirá como
parámetros el id_articulo, la cantidad a comprar, id_usuario y el token del usuario. Si
no hay error, regresa el código HTTP 200 y {“mensaje”:”OK”}, de lo contrario, regresa
el código HTTP 400 y {“mensaje”:”<mensaje de error>”}. Para ejecutar la función, se
deberá verificar el acceso utilizando la función "verifica_acceso" del microservicio
"Gestión de usuarios". La petición HTTP deberá ser PUT.

• Si la cantidad de artículos a comprar es menor o igual a la cantidad de artículos
en la tabla "stock" y el artículo no existe en el carrito de compra del usuario, se
deberá insertar en la tabla "carrito_compra" el id_usuario, id_articulo y la
cantidad, así mismo, se restará la cantidad a comprar de la cantidad en la tabla
de "stock". El INSERT a la tabla "carrito_compra" y el UPDATE a la tabla "stock"
se deberán realizar dentro de una transacción.

• Si la cantidad de artículos a comprar es menor o igual a la cantidad de artículos
en la tabla "stock" y el artículo ya existe en el carrito de compra del usuario, se
deberá agregar la cantidad de artículos. El UPDATE a la tabla "carrito_compra"
y el UPDATE a la tabla "stock" se deberán realizar dentro de una transacción.

• Si la cantidad de artículos a comprar es mayor a la cantidad de artículos en la
tabla "stock", se deberá regresar un código HTTP 400 indicando que hubo error
y {“mensaje”:”No hay suficientes artículos en el stock"}.

• compras/elimina_articulo_carrito_compra. Elimina un artículo de la tabla
"carrito_compra". La función recibirá como parámetros el id_usuario, id_articulo del
artículo a eliminar del carrito de compra del usuario y el token del usuario. Si no hay
error regresa el código HTTP 200 y {“mensaje”:”OK”} de otra manera regresa el código
HTTP 400 y {“mensaje”:”<mensaje de error>”}. Para ejecutar la función, se deberá
verificar el acceso utilizando la función "verifica_acceso" del microservicio "Gestión de
usuarios". La petición HTTP deberá ser DELETE.

• La función deberá eliminar el artículo del carrito de compra del usuario,
agregando la cantidad de los artículos en la tabla "stock" y borrando el registro
correspondiente de la tabla "carrito_compra".

• La actualización (UPDATE) de la tabla "stock" y el borrado (DELETE) del
artículo de la tabla "carrito_compra", deberán realizarse dentro de
una transacción.

• compras/elimina_carrito_compra. Borra todos los registros del carrito_compra del
usuario. La función recibirá como parámetros el id_usuario y el token del usuario. Si no
hay error regresa el código HTTP 200 y {“mensaje”:”OK”} de otra manera regresa el

código HTTP 400 y {“mensaje”:”<mensaje de error>”}. Para ejecutar la función, se
deberá verificar el acceso utilizando la función "verifica_acceso" del microservicio
"Gestión de usuarios". La petición HTTP deberá ser DELETE,.

• La función deberá eliminar cada artículo del carrito de compra del usuario,
agregando la cantidad de los artículos en la tabla "stock" y borrando los
registros de la tabla "carrito_compra" correspondientes al usuario.

• La actualización (UPDATE) de la tabla "stock" y el borrado (DELETE) de la tabla
"carrito_compra" deberán realizarse dentro de una transacción.

Requerimientos funcionales del front-end

1. La pantalla “Login” es la pantalla inicial. Esta pantalla permite capturar el email y la
contraseña del usuario, entonces invoca la función “login” del microservicio “Gestión de
usuarios” (ver requerimiento funcional 1 del back-end). No deberá enviarse al back-end la
contraseña, en su lugar, se enviará el hash de la contraseña.

Si el email y la contraseña son correctos, se guarda el id_usuario y el token y se despliega la
pantalla “Menú principal”. Si el email o la contraseña no son correctos, se despliega el
mensaje “Acceso denegado”.

2. La pantalla “Login” incluye una opción para registrar un nuevo usuario. Cuando se
selecciona esta opción, se despliega la pantalla “Alta de usuario”.

3. La pantalla “Alta de usuario” permite capturar los datos del usuario (ver requerimiento
funcional 1 del back-end).

3. Al seleccionar la opción "Captura de artículo" se deberá desplegar la pantalla "Captura de
artículo", la cual permitirá capturar el nombre del artículo, la descripción del artículo, el precio,
la cantidad de artículos en existencia y la fotografía del artículo (ver el requerimiento
funcional 2 del back-end).

4. Al seleccionar la opción "Compra de artículos" se deberá desplegar la pantalla "Compra de
artículos". En esta pantalla el usuario podrá ingresar una palabra que se buscará en los
campos "nombre" y "descripción" de la tabla "stock" (ver requerimiento funcional 2 del back-
end).

5. Para cada artículo resultado de la búsqueda, se deberá desplegar en la pantalal “Compra
de artículos” una pequeña foto del artículo, el nombre, la descripción, el precio, un botón de
"Compra" y un campo de "Cantidad" con un valor default igual a 1.

6. Cuando el usuario presione el botón de "Compra", se realizará la compra (ver
requerimiento funcional 3 del back-end).

7. La pantalla de "Compra de artículos" deberá disponer de un botón "Carrito de compra" el
cual deberá desplegar una pantalla "Artículos en el carrito" con los artículos en la tabla
"carrito_compra", incluyendo una pequeña imagen del artículo, nombre del artículo, la
cantidad a comprar, precio y costo (cantidad x precio). Así mismo, en la ventana "Artículos en
el carrito" se deberá desplegar el total de la compra.

8. Para cada artículo en la pantalla "Artículos en el carrito" se deberá incluir un botón
"Eliminar artículo" el cual permitirá eliminar el artículo del carrito de compra (ver
requerimiento funcional 3 del back-end).

9. La pantalla "Artículos en el carrito" deberá tener un botón "Eliminar carrito" el cual permitirá
borrar el carrito de compra (ver requerimiento funcional 3 del back-end).

10. La pantalla "Artículos en el carrito" deberá tener un botón "Seguir comprando" el cual
deberá permitir regresar a la pantalla "Compra de artículos".

Evaluación del proyecto

° Antes de la presentación de su proyecto, los alumnos y alumnas deberán enviar los
siguientes archivos al correo electrónico capineda@ipn.mx: 1) código fuente del front-
end, 2) código fuente del back-end, 3) archivos de configuración de Nginx como servidor
web, 4) archivos de configuración de Nginx como API Gateway, 5) scripts de las bases
de datos, 6) docker files y 7) manifest files (cuatro Deployment, cuatro ClusterIP, un
LoadBalancer, un PV y un PVC).

° Los alumnos y alumnas deberán presentar su proyecto al profesor evaluador en el
laboratorio el día 10 de febrero de 2026 en el horario que corresponda, matutino o
vespertino.

° Para la evaluación del proyecto, se utilizará una rúbrica la cual permitirá verificar que
se hayan cumplido los requerimientos funcionales y no funcionales descritos en las
especificaciones del proyecto.

° Para presentar su proyecto, los alumnos y las alumnas podrán utilizar su propio
equipo de cómputo o una computadora del laboratorio.

mailto:capineda@ipn.mx

