Escuela Superior de Cémputo
Evaluacion a Titulo de Suficiencia Especial

Sistemas Distribuidos

Prototipo de sistema de comercio electronico utilizando
microservicios sobre Kubernetes en la nube

Resumen

Se desarrollar4 un prototipo de sistema de comercio electrénico desplegado en la nube,
consistente en un front-end HTML-Javascript y un back-end implementado como
microservicios Java, accediendo a una instancia de MySQL administrada (PaaS). Cada
microservicio ejecutara en un pod de Kubernetes.

El servidor web serd Nginx y ejecutara en un pod. Los archivos del front-end estaran en un
almacenamiento compartido. El servidor web accedera a los archivos del front-end utilizando
Persistent Volume (PV) y Persistent Volume Claim (PVC).

El APl Gateway sera Nginx, el cual recibird peticiones HTTP y ejecutara en un pod. El API
Gateway se expondra al cliente (navegador) mediante un servicio de Kubernetes de tipo
LoadBalancer.

El APl Gateway enrutara las peticiones HTTP a los pods que ejecutaran los microservicios
(incluyendo el servidor web), por tanto, los pods se expondran al APl Gateway utilizando un
servicio de Kubernetes de tipo ClusterlP.

No se requiere escalado automatico de pods, por tanto, las replicas de los pods se definiran
directamente en los manifest files de tipo Deployment.

Requerimientos no funcionales

1. El back-end consistira de cuatro microservicios Java ejecutando en Kubernetes
administrado (PaaS):

1. Gestion de usuarios. Microservicio para gestionar los datos de los usuarios.
2. Gestidn de articulos. Microservicio para gestionar los datos de los articulos.
3. Gestién de compras. Microservicio para gestionar la compra de articulos.

4. Servidor web. Microservicio que ejecutara Nginx en un pod.

2. Se debera utilizar MySQL administrado en la nube (PaaS).

3. Se debera utilizar Kubernetes administrado en la nube (PaaS).

4. Los archivos del front-end (.html, .js, .jpeg, .css, etc.) se deberan colocar en un
almacenamiento compartido (Azure Files, Amazon EFS o Google Filestore). Los archivos del

front-end no deberan colocarse en el file system del contenedor que ejecuta el servidor web
(Nginx).

5. El front-end se desarrollard en HTML-Javascript. Se podra utilizar cualquier framework
(p.e. React, Angular, Bootstrap, etc.).

6. El back-end consistira en servicios web Java ejecutando en pods de Kubernetes. Se podra
utilizar cualquier framework para desarrollar los microservicios (p.e. Spring Boot, Azure
Functions, JDK, etc.).

6.1 Las funciones del back-end invocadas con POST y PUT recibiran JSON en el “body”.
6.2 Todas las funciones del back-end (GET, POST, PUT y DELETE) regresaran JSON.

7. Cada microservicio tendra su propia base de datos y no debera acceder a la base de datos
de otro microservicio; suponiendo que “12345678” es el nimero de boleta del alumno o
alumna:

7.1 La base de datos para la Gestion de usuarios se llamara “bdgu_12345678” e incluira la
siguiente tabla:

Tabla: usuarios

Columna Tipo Nulo
id_usuario jint no
email varchar(100) no
password varchar(64) no
token varchar(40) Si
nombre varchar(100) no
apellidos varchar(100) no

El id_usuario sera llave primaria auto-incrementada.

La columna “password” almacena el hash (sha-256) de la contrasefia en formato
hexadecimal. Debido a que sha-256 produce un numero de 32 bytes, el password se
almacena como 64 caracteres hexadecimales.

Se debera crear un indice Unico para el campo “email”.

7.2 La base de datos para la Gestion de articulos se llamara “bdga_12345678” e incluira las
siguientes tablas:

Tabla: stock
Columna [Tipo Nulo
id_articulo |int no

nombre varchar(256) no
descripcion varchar(256) no
precio decimal(10,2) |no

El id_articulo sera llave primaria auto-incrementada.

Tabla: fotos_articulos
Columna [Tipo Nulo
id_foto int no
foto longblob no
id_articulo |int no

7.3 La base de datos para la Gestion de compras se llamara “bdgc_12345678" e incluira las
siguientes tablas:

Tabla: carrito_compra
Columna [Tipo Nulo
id_usuario |int no
id_articulo |int no
cantidad |int no

Se debera crear un indice Unico para los campos (id_usuario,id_articulo).

Tabla: stock

Columna [Tipo Nulo
id_articulo fint no
cantidad |int no

8. Para cada microservicio se debera escribir: 1) un Dockerfile para crear la imagen, 2) un
manifest file de tipo Deployment para el despliegue de los pods y 2) un manifest file de tipo
ClusterlIP para el despliegue del servicio que expone el microservicio al APl Gateway.

9. Para que el servidor web (Nginx) tenga acceso a los archivos correspondientes a la
aplicacion web, es necesario crear un servicio Persistent Volume (PV) y un servicio
Persistent Volumen Claim (PVC). El PVC debera definir storageClassName: " (lo cual indica
gue el almacenamiento compartido no lo creard automaticamente Kubernetes), por tanto, el
almacenamiento compartido debera ser creado por el alumno o la alumna y deberan cargar
los archivos del front-end (html, s, css, jpeg, png, etc.) en el almacenamiento compartido.

10. El API Gateway sera Nginx, el cual debera ejecutar en un pod en Kubernetes y debera
exponer un servicio de Kubernetes de tipo Loadbalancer.

11. El sistema mostrara las siguientes pantallas:

11.1 Login. Pantalla que permite ingresar el email del usuario y la contrasefia. Asi mismo, en
esta pantalla se incluird una opcion para registrar un nuevo usuario.

11.2 Alta de usuario. Pantalla para registrar un nuevo usuario.

11.3 Menu principal. Pantalla que muestra un menu con las siguientes opciones: “Captura
de articulo” y “Compra de articulos”.

11.4 Captura de articulo. Pantalla para dar de alta los datos de un articulo.

11.5 Compra de articulos. Pantalla para buscar articulos y para comprar articulos.

11.6 Carrito de compra. Pantalla que muestra los articulos en el carrito de compra.

12. Solo se podra utilizar Microsoft Azure, AWS o Google Cloud. La siguiente tabla muestra
como se llaman las diferentes tecnologias a implementar, de acuerdo a la plataforma a

utilizar:

Azure

AWS

Google Cloud

Kubernetes administrado

AKS (Azure Kubernetes
Service)

EKS (Elastic Kubernetes
Service)

GKE (Google Kubernetes
Engine)

Servicio interno entre pods

Serrvicio ClusterIP

Serrvicio ClusterlP

Serrvicio ClusterlP

Exposicion externa del API

Gateway Servicio LoadBalancer Servicio LoadBalancer Servicio LoadBalancer
Balanceador creado

automaticamente Azure Load Balancer AWS ELB / NLB Google Cloud Load Balancer
Almacenamiento compartido de

archivos Azure Files Amazon EFS Filestore

Persistent Volume PV (Azure Files CSI) PV (EFS CSI) PV (Filestore CSI)

Persistent Volume Claim PVC PVC PVC

MySQL administrado

Azure Database for MySQL

Amazon RDS for MySQL

Cloud SQL for MySQL

Registro de imagenes de
contenedor

Azure Container Registry
(ACR)

Amazon ECR

Artifact Registry

Escalado de los microservicios

Replicas en manifest file

Replicas en manifest file

Replicas en manifest file

Arquitectura del sistema

La arquitectura del sistema es la siguiente (notar que podran existir varias réplicas de los
pods que ejecutan el Api Gateway y los microservicios):

Kubernetes

'-1
‘-

e
MySQL
PaaS

Almacenamiento
compartido de
archivos

Requerimientos funcionales del back-end

1. El microservicio "Gestion de usuarios" debera incluir las siguientes funciones:

usuarios/alta_usuario. Da de alta un usuario. Recibe como parametros los datos del
usuario: email, hash del password (sha-256), nombre y apellidos. Si no hay error
regresa el codigo HTTP 200 y {“mensaje”:."OK"} de otra manera regresa el codigo
HTTP 400 y {“mensaje”:"<mensaje de error>"}. La peticibn HTTP debera ser POST.
usuarios/login. Autentica un usuario. Recibe como parametros el email y el hash de
la contrasefa; si el email y el hash de la contrasefia se encuentran en la tabla de
"usuarios"”, genera un token aleatorio de 40 caracteres, actualiza el token en la tabla
"usuarios" y regresa el cédigo HTTP 200 y {‘id_usuario”: <id_usuario>, "token”:
"<token>"}. Si el email y el hash de la contrasefia no se encuentran en la tabla
"usuarios" regresa el cédigo HTTP 400 y {“mensaje”: "Acceso denegado"}. La peticion
HTTP debera ser POST.

usuarios/verifica_acceso. Verifica que el usuario se haya autenticado (logueado). La
funcién recibira como parametros el id_usuario y el token; regresara el cédigo HTTP
200 y {"acceso”:<true o false>}, indicando si el id_usuario y el token se encontraron en
la tabla de "usuarios". Si hay error regresa el codigo HTTP 400 y {“mensaje”:
"<mensaje de error'}. La peticion HTTP debera ser GET.

2. El microservicio "Gestion de articulos" debera incluir las siguientes funciones:

articulos/alta_articulo. Da de alta articulos en la tabla "stock". La funcién recibira
como parametros el nombre del articulo, la descripcion del articulo, el precio, la
cantidad de articulos en existencia, la fotografia del articulo, el id_usuario y el token
del usuario. Para ejecutar la funcion, se debera verificar el acceso utilizando la funcién
"verifica_acceso" del microservicio "Gestion de usuarios”. Debido a que la cantidad del
articulo no existe en la base de datos del microservicio "Gestion de articulos”, la
funcién "alta_articulo” debera invocar la funcion "alta_articulo” del microservicio
"Gestion de compras". Si no hay error regresa el cédigo HTTP 200 y {“mensaje”:“OK"}
de otra manera regresa el codigo HTTP 400 y {“mensaje”:."<mensaje de error>"}. El
INSERT a la tabla “stock” y el INSERT a la tabla “fotos_articulos” debera hacerse
dentro de una transaccién. La peticion HTTP debera ser POST.
articulos/consulta_articulos. Busca una palabra (p.e. mayonesa) en los campos
“nombre” y “descripcion” en la tabla “stock”. Si no hay error, regresa el codigo HTTP
200 y un arreglo JSON con los datos de los articulos (id_articulo, fotografia, nombre,
descripcioén y precio). Si hay error regresa el codigo HTTP 400 y {“mensaje”."<mensaje
de error>"}. La busqueda se deberé realizar utilizando una instruccion SELECT con
LIKE. La funcion recibira como parametros la palabra clave, el id_usuario y el token
del usuario. Para ejecutar la funcion, se debera verificar el acceso utilizando la funcion
"verifica_acceso" del microservicio "Gestion de usuarios”. La peticion HTTP debera ser
GET.

3. El microservicio "Gestién de compras" deberd incluir las siguientes funciones:

+ comprasl/alta_articulo. Da de alta el articulo en la tabla "stock". La funcion recibira

como parametros el id_articulo, la cantidad en existencia, el id_usuario y el token del
usuario. Si no hay error regresa {‘mensaje”.’OK”} de otra manera regresa
{*mensaje”."<mensaje de error>"}. Para ejecutar la funcion, se debera verificar el
acceso utilizando la funcién "verifica_acceso" del microservicio "Gestion de usuarios”.
La peticion HTTP debera ser POST.

compras/compra_articulo. Realiza la compra de un articulo. La funcion recibira como
parametros el id_articulo, la cantidad a comprar, id_usuario y el token del usuario. Si
no hay error, regresa el codigo HTTP 200 y {"mensaje”:"OK"}, de lo contrario, regresa
el codigo HTTP 400 y {“mensaje”:"<mensaje de error>"}. Para ejecutar la funcién, se
deberé verificar el acceso utilizando la funcion "verifica_acceso" del microservicio
"Gestion de usuarios". La peticion HTTP deberéa ser PUT.

» Sila cantidad de articulos a comprar es menor o igual a la cantidad de articulos
en la tabla "stock" y el articulo no existe en el carrito de compra del usuario, se
debera insertar en la tabla "carrito_compra” el id_usuario, id_articulo y la
cantidad, asi mismo, se restara la cantidad a comprar de la cantidad en la tabla
de "stock”. EI INSERT a la tabla "carrito_compra" y el UPDATE a la tabla "stock"
se deberan realizar dentro de una transaccion.

* Sila cantidad de articulos a comprar es menor o igual a la cantidad de articulos
en la tabla "stock" y el articulo ya existe en el carrito de compra del usuario, se
debera agregar la cantidad de articulos. EI UPDATE a la tabla "carrito_compra"
y el UPDATE a la tabla "stock" se deberan realizar dentro de una transaccion.

» Si la cantidad de articulos a comprar es mayor a la cantidad de articulos en la
tabla "stock", se debera regresar un cédigo HTTP 400 indicando que hubo error
y {“mensaje”:"No hay suficientes articulos en el stock"}.

compras/elimina_articulo_carrito_compra. Elimina un articulo de la tabla
"carrito_compra”. La funcion recibirda como parametros el id_usuario, id_articulo del
articulo a eliminar del carrito de compra del usuario y el token del usuario. Si no hay
error regresa el cédigo HTTP 200 y {“mensaje”:"OK"} de otra manera regresa el cédigo
HTTP 400 y {"mensaje”:"<mensaje de error>"}. Para ejecutar la funcidn, se debera
verificar el acceso utilizando la funcion "verifica_acceso" del microservicio "Gestion de
usuarios". La peticion HTTP debera ser DELETE.

* La funcidon debera eliminar el articulo del carrito de compra del usuario,
agregando la cantidad de los articulos en la tabla "stock" y borrando el registro
correspondiente de la tabla "carrito_compra".

* La actualizacion (UPDATE) de la tabla "stock" y el borrado (DELETE) del
articulo de la tabla "carrito_compra”, deberan realizarse dentro de
una transaccion.

compras/elimina_carrito_compra. Borra todos los registros del carrito_compra del
usuario. La funcién recibird como parametros el id_usuario y el token del usuario. Si no
hay error regresa el codigo HTTP 200 y {“mensaje”:"OK"} de otra manera regresa el

coédigo HTTP 400 y {“mensaje”."<mensaje de error>"}. Para ejecutar la funcién, se
deberé verificar el acceso utilizando la funcion "verifica_acceso" del microservicio
"Gestion de usuarios". La peticion HTTP deber& ser DELETE,.

* La funcion deberd eliminar cada articulo del carrito de compra del usuario,
agregando la cantidad de los articulos en la tabla "stock™ y borrando los
registros de la tabla "carrito_compra” correspondientes al usuario.

* La actualizacion (UPDATE) de la tabla "stock" y el borrado (DELETE) de la tabla
"carrito_compra" deberan realizarse dentro de una transaccion.

Requerimientos funcionales del front-end

1. La pantalla “Login” es la pantalla inicial. Esta pantalla permite capturar el email y la
contrasefia del usuario, entonces invoca la funcién “login” del microservicio “Gestién de
usuarios” (ver requerimiento funcional 1 del back-end). No debera enviarse al back-end la
contrasenia, en su lugar, se enviara el hash de la contrasefa.

Si el email y la contrasefia son correctos, se guarda el id_usuario y el token y se despliega la
pantalla “Menu principal”. Si el email o la contrasefia no son correctos, se despliega el
mensaje “Acceso denegado”.

2. La pantalla “Login” incluye una opcién para registrar un nuevo usuario. Cuando se
selecciona esta opcion, se despliega la pantalla “Alta de usuario”.

3. La pantalla “Alta de usuario” permite capturar los datos del usuario (ver requerimiento
funcional 1 del back-end).

3. Al seleccionar la opcion "Captura de articulo" se debera desplegar la pantalla "Captura de
articulo”, la cual permitira capturar el nombre del articulo, la descripcion del articulo, el precio,
la cantidad de articulos en existencia y la fotografia del articulo (ver el requerimiento
funcional 2 del back-end).

4. Al seleccionar la opcién "Compra de articulos" se debera desplegar la pantalla "Compra de
articulos". En esta pantalla el usuario podra ingresar una palabra que se buscara en los
campos "nombre” y "descripcion” de la tabla "stock" (ver requerimiento funcional 2 del back-
end).

5. Para cada articulo resultado de la busqueda, se debera desplegar en la pantalal “Compra
de articulos” una pequefia foto del articulo, el nombre, la descripcion, el precio, un botén de
"Compra" y un campo de "Cantidad" con un valor default igual a 1.

6. Cuando el usuario presione el boton de "Compra", se realizard la compra (ver
requerimiento funcional 3 del back-end).

7. La pantalla de "Compra de articulos" debera disponer de un boton "Carrito de compra" el
cual debera desplegar una pantalla "Articulos en el carrito” con los articulos en la tabla
"carrito_compra”, incluyendo una pequefia imagen del articulo, nombre del articulo, la
cantidad a comprar, precio y costo (cantidad x precio). Asi mismo, en la ventana "Articulos en
el carrito” se debera desplegar el total de la compra.

8. Para cada articulo en la pantalla "Articulos en el carrito" se deberd incluir un boton
"Eliminar articulo" el cual permitird eliminar el articulo del carrito de compra (ver
requerimiento funcional 3 del back-end).

9. La pantalla "Articulos en el carrito" debera tener un boton "Eliminar carrito" el cual permitira
borrar el carrito de compra (ver requerimiento funcional 3 del back-end).

10. La pantalla "Articulos en el carrito" debera tener un boton "Seguir comprando” el cual
debera permitir regresar a la pantalla "Compra de articulos".

Evaluacién del proyecto

° Antes de la presentacién de su proyecto, los alumnos y alumnas deberan enviar los
siguientes archivos al correo electrénico capineda@ipn.mx: 1) cédigo fuente del front-

end, 2) codigo fuente del back-end, 3) archivos de configuracion de Nginx como servidor
web, 4) archivos de configuracion de Nginx como API Gateway, 5) scripts de las bases
de datos, 6) docker files y 7) manifest files (cuatro Deployment, cuatro ClusterIP, un
LoadBalancer, un PV y un PVCQ).

° Los alumnos y alumnas deberan presentar su proyecto al profesor evaluador en el
laboratorio el dia 10 de febrero de 2026 en el horario que corresponda, matutino o
vespertino.

° Para la evaluacién del proyecto, se utilizara una rubrica la cual permitira verificar que
se hayan cumplido los requerimientos funcionales y no funcionales descritos en las
especificaciones del proyecto.

° Para presentar su proyecto, los alumnos y las alumnas podran utilizar su propio
equipo de cdmputo o una computadora del laboratorio.

mailto:capineda@ipn.mx

